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Abstract

Models for incompressible immiscible bifluid flows with surface tension are here considered. Since Brackbill et al. [J.U.
Brackbill, D.B. Kothe, C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys. 100 (1992) 335—
354] introduced the Continuum Surface Force (CSF) method, many methods involved in interface tracking or capturing
are based on this reference work. Particularly, the surface tension term is discretized explicitly and therefore, a stability
condition is induced on the computational time step. This constraint on the time step allows the containment of the ampli-
fication of capillary waves along the interface and puts more emphasis on the terms linked with the density in the Navier—
Stokes equation (i.e. unsteady and inertia terms) rather than on the viscous terms. Indeed, the viscosity does not appear, as
a parameter, in this stability condition.

We propose a new stability condition which takes into account all fluid characteristics (density and viscosity) and for
which we present a theoretical estimation. We detail the analysis which is based on a perturbation study — with capillary
wave — for which we use energy estimate on the induced perturbed velocity. We validate our analysis and algorithms with
numerical simulations of microfluidic flows using a Level Set method, namely the exploration of different mixing dynamics
inside microdroplets.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Analysis and algorithms derived herein are the result of our interest in modelling and numerically simulate
bifluid flows in microfluidics. Over the last decade, microfluidics has revolutionized our ability to manipulate
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and control flows in channels the width of a single human hair. The deeply affected fluid behaviour, due to
preponderance of surface tension and viscosity, is used in applications ranging from biology and medicine
to chemistry and materials processing. Among all applications of two fluids flows at low Reynolds numbers,
we are more particularly interested in the use of microdroplets. Creation and transport of droplets in micro-
channels are extensively described in the literature both from theoretical and experimental point of view (e.g.
see [2,45,20]). Making the most of surface tension effects, flows of two immiscible fluids in microdevices allow
to create monodisperse emulsions where droplets of the same size move through microchannels networks and
are used as microreactors to study very fast chemical kinetics (of the order of a millisecond [44]).

In this paper, we will thus consider models for immiscible bifluid flows with surface tension. A vast amount
of numerical methods has been developed for modelling of such free surface flows. A standard classification
first leads to distinguish Lagrangian, Eulerian or mixed Lagrangian—Eulerian methods regarding the model-
ling of the flow. In Lagrangian methods, a mesh element always contains the same fluid particles and thus
computational mesh moves with the fluid. Conversely, Eulerian methods are based on a fixed mesh in which
the fluid cross the computational cells. A second distinction lies in the modelling of the evolving interface
which can be explicitly tracked along trajectories of fluid particles, leading to so-called interface tracking
methods; conversely, the interface can be implicitly tracked by embedding it in a globally defined field variable
such as viscosity, density or volume fraction, leading to so-called interface capturing methods. Among the
methods for simulating moving interface we find VOF [13,37], Level Set [30], front tracking [54,53], diffuse-
interface [1,3,22] and lattice Boltzmann [6,11,15] methods, to name a few.

Among models for surface tension, the Continuum Surface Force (CSF) formulation introduced by
Brackbill et al. [4] has been widely and fruitfully used in the literature: e.g. see [33,41] for VOF method or
[48,25] for Level Set method. The idea is to treat the surface tension as a body force in the momentum
equation. This force, distributed within a transition zone, allows straightforward implementation of surface
tension effect, even when topological changes occur. We note that numerous studies has been conducted to
improve a drawback of this method, namely spurious currents (also known as parasitic currents) generated
in the neighbourhood of the interface. These spurious currents are unphysical vortex-like velocities. First
observed in Boltzmann interfacial methods, parasitic currents are also presented by Lafaurie et al. in [23]
where they suggested the alternative Continuum Surface Stress (CSS) method. Then follow several approaches
to tackle this problem [34,31,52,33,40,51,25]. Their key ideas in suppressing parasitic currents, usually men-
tioned in this literature, are (i) improvement of curvature computation, (ii) achievement of discrete balance
between surface tension and pressure gradient (iii) adaptive time integration scheme to tackle the stiffness
induced by surface tension [24]. In addition, a singular and very promising work is developed by Jamet
and coworkers [17]. It relies more on minimal energy consideration and can eliminate parasitic currents down
to machine precision. Note, that this approach is applied in the context of diffuse interface and second gradient
method [16].

In [4], as in many later approaches based on CSF method, the surface tension term is discretized explicitly
and therefore, a stability condition is induced on the computational time step. This constraint on the time step
allows the containment of the amplification of capillary waves along the interface. Furthermore most of the
aforementioned methods use the stability condition derived in [4]. This stability condition puts more emphasis
on the terms linked with the density in the Navier—Stokes equation (i.e. unsteady and inertia terms) rather
than on the viscous terms. Indeed, the viscosity does not appear, as a parameter, in this stability condition.
In this paper, we propose a new stability condition for which we present a theoretical estimation for flows with
low and medium Reynolds numbers. This stability condition involves the fluid density as well as its viscosity.
Besides, considering two regimes we can exhibit two stability conditions which are more restrictive and such
that one of them is the condition proposed in [4] and the other is more suited for Stokes like flows. Numerical
validation is done using a Level Set method.

Level Set methods have been applied with great success in a broad range of physical and image processing
applications (see books [29,38]). The original formulation [30], together with tools of the Level Set technology
such as (W)ENO schemes, TVD Runge-Kutta schemes [42,43,19,18] and PDE-based redistanciation are used
here to achieve accurate simulation of surface tension-driven flows. We note that numerical studies of flows at
micrometer scale had already been conducted. In a series of papers, Yu et al. [55-57] perform abundant
numerical simulations of ink-jet printing for both Newtonian and viscoelastic fluids; in these applications,
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the Reynolds number is rather high, namely 40-90. Shapiro and Drikakis [39] developed specific methods for
diffusion broadening in two- and three-dimensional microfluidic channels. De Menech performed simulation
of droplet breakup in a microfluidic junction, with a phase field method [26]. Also concerning droplet forma-
tion, Renardy used very recently the VOF-PROST method to study the effects of confinement and inertia on
the production of droplets [32]. In this paper, we will present numerical results for microflows with Reynolds
number of order one or less, showing different mixing dynamics inside the microdroplets which are in good
agreement with results reported in the literature.

The remainder of this paper is as follows. Section 2 is devoted to the presentation of mathematical mod-
els used for the simulation of bifluid flows with surface tension, adopting a CSF formulation. Section 3 then
provides the description of the numerical resolution approach, discretizations and solvers. The main result
of this paper concerning the new numerical stability condition is then derived in Section 4. The analysis is
based on a perturbation study — with capillary wave — for which we use energy estimate on the induced
perturbed velocity. We will show numerically that a degenerate version — of this general stability condition
— for Stokes like flows is better suited and discuss this point in more details. We will see that stability issue
described herein has applications beyond the micrometer scale domain and, depending on fluids properties,
can be applied to meter scale flow simulations. Finally, in Section 5, we present numerical results of micro-
droplets simulations.

2. Concerned models for bifluid flows

In this study, we consider flows of two immiscible fluids assumed to be viscous and Newtonian. We further
assume that the flow is isothermal and fluids are incompressible and homogeneous. Densities and viscosities
are thus constant within each fluid. The governing equations can then be expressed by the Navier—Stokes
equation

p(%l:+u-Vu>—V-(2nDu)+Vp:F V(,x) € R" x Q, (1)
together with the incompressibility condition,
Vou=0 VY(,x)eR xQ, (2)

where Q is the 2D (or 3D) bounded fluid domain, u = (u, v) is the velocity field, p the pressure, p the density, 7
the viscosity, F any body force (such as gravitational acceleration or surface tension, as we will describe in the
following) and Du = (Vu+ V'u)/2.

Bearing in mind that we will present some microfluidic applications at the end of this paper, we mention
now that (1) reduces to Stokes equation when inertia influence can be neglected:

0
pa—l;—V~(2nDu)+Vp:F Y(1,x) € R x Q, (3)
Moving interfaces can be handled with the Level Set method — introduced by Osher and Sethian in [30] (see
also [29,38]) — and we use here the approach of Sussman et al. [48] for incompressible two-phase flows. The
interface between the two fluids is thus captured by advecting the Level Set function ¢ with the flow velocity u,
0
a—d;—ku-Vd):O V(t,x) € R x Q, 4)
where ¢ has to be thought as a signed distance function. Affecting the subscript 1 and 2 to all quantities related
respectively to fluid 1 or fluid 2, the Level Set function is, for instance, such that

<0 in fluid 1,
¢< =0 on the interface, (5)
>0 in fluid 2.

Hence (1) is a single fluid continuum model for the flow with variable density and viscosity given, respectively,
by
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p =p;+ (pr — p)H (), (6)
n=n+ (ny —m)H(¢), (7)

where H is the Heaviside function.

Being here dedicated to flows where surface tension is preponderant, we will assume in the following that
gravitational acceleration is negligible and thus, the body force F is restricted to surface tension. In this sharp-
interface approach, we further assume that surface tension is constant along the interface and we adopt the
Level Set version of the CSF method to write the surface tension force F, as

F, = okd(p)n, (8)

where o is the surface tension coefficient, n is the unit normal to the interface, k is the curvature of the interface
and J(¢) is the Dirac delta function localized on the interface. This formulation of the surface tension has been
used by Unverdi and Tryggvason [54] and Brackbill et al. [4]. This complete Level Set formulation with the
Navier—Stokes equations for two-fluids flows was derived by Chang et al. [5] and later used in many other
works (Sussman et al. [47,46], Olsson and Kreiss [28], Marchandise et al. [25], to new a few).

In a Level Set framework, the unit normal to the interface is classically obtained via ¢,

Vo
n=—_- )
Vol 40
as well as the mean curvature of the interface,
V¢ >
K=V |=+ . (10)
<|V¢>I p

3. Numerical resolution approach

In this section, we describe the general procedure, discretizations of the model and flow solver used to com-
pute evolving interfaces for bifluid flows.

3.1. General procedure

In the following, we will consider geometry in two dimensions for ease of presentation. The 3D approach
follows the same philosophy. The algorithm is as follows:

(1) Initialize a Level Set function ¢ to represent the interface and update physical quantities # and p.
(2) Compute the unit normal n and the curvature .

(3) Solve the Navier—Stokes equation for (u, p).

(4) Update ¢ by solving the transport equation associated to u.

(5) Eventually, apply redistanciation procedure on ¢, if needed.

(6) Iterate (2)—(5) for each step of the time discretization.

Step (5) has been introduced in Level Set methods in order to improve mass conservation which is a draw-
back often mentioned in the literature. Mulder et al. [27] showed that taking ¢ as a signed distance function
improve the accuracy of the method. Moreover, Chopp [7] went a step further introducing the concept of red-
istanciation: to achieve more accurate computation, ¢ should remain a signed distance function along itera-
tions and thus should be periodically reinitialized; here several approaches exist: on the one hand,
reinitialization is applied at each time step, and on the other hand, periodicity is strictly greater than one iter-
ation (e.g. 10 iterations).

3.2. Discretizations

A first-order discretization is used for evolving the equations in time. The superscripts n» and n + 1 repre-
sent, respectively, the current and next time level. Following the algorithm presented in the last section, we
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have current u” and ¢" which, by solving Navier-Stokes equation, gives (u""!, p"*!); we can then solve trans-
port equation for ¢"™'. To sum up:

n+l _ n
P (umu - w") — V- 2'Du"th) + Vp' = ox5(¢")m, (11)
V~lln+1 :O’ (12)
¢r1+1 o ¢n el .

LV =0, (13)

where At is the computational time step. We would like to make several comments here. First, the surface ten-
sion term is discretized explicitly which implies a specific numerical stability condition as we will see in the
following section. Second, one can also use higher order discretizations in time but this does not change
the core result proposed in this paper. Finally, in our code, we can use TVD Runge—Kutta scheme in time
of order 2 or 3 for the transport equation (following Shu and Osher [42]).

For spatial discretization of (11) and (12), we use a finite-volume method on a staggered grid as in the
Marker and Cell (MAC) method of Harlow and Welch [12].

Concerning the surface tension term gxd(¢)n = oV - nVH(¢), we use a mollified Heaviside function on few

cells (e.g. 3) and a central scheme to approximate the curvature V-n =V - %‘ Note that, for a slightly improve-
ment of numerical results, we prefer to approximate the curvature V - %, where ¢ is a five-point average of ¢.

The transport equation (13) is discretized with a WENOS scheme [18].
For the redistanciation of the function ¢, we use a reinitialization equation which is discretized by the
method of Russo and Smereka [35].

3.3. Flow solver

In order to solve (11) and (12) for (u"™!, p"*!), we use an augmented Lagrangian method (see e.g. [49,8,10]).

This algorithm consists in solving Navier—Stokes with an iterative method in order to converge towards a
solution which satisfies the incompressibility constraint. To this end, we denote in a natural way (We1,p,.)
and (w, p,) the variables of this iterative process. We proceed as follows:

(1) Initialize (uo, p,) (e.g. solving Stokes equation).
(2) Solve the following linear system for u;:

éukﬂ — V- 2nDugyy) + O V(V - upyy) = A%u” — pu".Vu" + 0k"(¢")n — Vp, (14)
(3) Update the pressure p,,, via
Pt =P — 2V - upy. (15)

(4) Iterate (2)—(3) until convergence (e.g. when |p,., — p,| < {or [V -uy| <)
(5) Finally, assign (u"*', o) = (w1, peiy),

where 6, and 6, are numerical coefficients of the augmented Lagrangian and { is the desired convergence cri-
teria. In our computations, we take 0; = 0, = 1. Remark that the initialization step (1) can be done as follows,
depending on the current status in the global evolution computation:

e if the initial physical time step of the simulation must be computed, and one does not have any “natural”
initial guess either for (u’, p°) or for (ug, p,), one can compute the solution of the stationary Stokes equa-
tion. To this end, it suffices to apply the above algorithm with any initial (uo, py) (e.g. (uo,p,) = (1;1)) and
imposing p = 0. At convergence, obtained solution is an ad hoc candidate (u°, p°) for initializing unsteady
Navier—Stokes computation;

e if several iterations are already computed, one could simply assign (ug, p,) = (u*, p").

In the microfluidic applications of this paper, where a Stokes model is used for the flow, this augmented
Lagrangian algorithm converges in 4 or 5 iterations to the solution such that the vanishing-divergence con-
straint is verified at the order of the divergence approximation, say at the second-order.
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4. Stability condition and the role of surface tension

Formulation (11)—(13) classically induces a numerical stability condition on the time step. First, the time
step must obey the CFL condition due to the convective terms of Navier—Stokes and transport equation. Sec-
ond, the explicit discretization of the surface tension term induces another restriction on the time step. This
constraint on the time step allows the containment of the amplification of capillary waves along the interface.

Most of methods based on the CSF formulation use the surface tension-induced stability condition derived
in the seminal work of Brackbill et al. [4] and other derivations also lead to similar conditions (e.g. see [21]).

In this section, we derive a new stability condition induced by surface tension for flows with low and med-
ium Reynolds numbers.

4.1. Stability analysis

Proposition 1. Assume that (1) and (2) is discretized in time by an explicit discretization of the surface tension
term and that (4) is discretized by a stable explicit scheme. Then, for sufficiently small Reynolds numbers, a
numerical scheme, associated to such a time discretization and all space discretizations, is stable under the
condition:

At < min (At,, At,), with (16)

Ate = col|ul|j~ ) Ax  and (17)
_ 1 /% P s

AtU—AtJ(p,n)—§<cngx—|—\/(Cg;A}C) +de DA (18)

where At is the time step, Ax is the space step of the discretization, and c, ¢y, ¢; do not depend on the physical and
discretization data of the problem.

Remark 1. In this proposition, the restriction on the Reynolds number holds only because of the nonlinear
term in Navier—Stokes equations. This restriction corresponds to an assumption of laminar flows.

Remark 2. Note that, as shown in (18), the time step A¢, depends on the density and the viscosity. The cap-
illary time step derived in [4] verifies

Atoxz ~ | /gAx* ~ At,(p,0). (19)

The capillary time step related to Stokes equation (when neglecting inertia phenomena)

At ~ L Ax ~ Aty(0,1). (20)

o

Finally, we remark that the capillary time step A¢, is the less restrictive, since

At, = Atstk and  At, = Atpkz. (21)
Proposition 1 then shows numerical stability under the well-known condition

At < min(AtC, AtBKZ)~ (22)
Moreover, this proposition also shows numerical stability under the condition

At < min(AtC, AISTK)' (23)

We will more particularly focus on numerical validation of (23) in Section 4.2 and then discuss and compare
all these conditions in Section 4.3.

We note that the following derivation is not, in a strict sense, a mathematical proof since two relevant phys-
ical assumptions on the Navier-Stokes solutions are introduced step by step in the derivation. Actually, these
assumptions allow to complete the mathematical derivation of inequality verified by a “capillary velocity”



6146 C. Galusinski, P. Vigneaux /| Journal of Computational Physics 227 (2008) 6140-6164

(which will be precised below) and are thus useful for numerical analysis of the time step constraint. Apart
from these two relevant assumptions the whole derivation consists in rigorous mathematical analysis.

Derivation

First, convection terms imply the constraint Az < co||u||Zi(Q)Ax which is the classical CFL condition where
¢y depends on the choice of the scheme to discretize the transport equation (4).

Second, the condition involving Az < Az, avoids the oscillation phenomena of the interface due to surface
tension and this condition is the main objective of the present derivation. Let us begin by outlining how we
proceed:

(1) When (11)—(13) is solved numerically, some small consistent numerical errors lead to some equally small
perturbations of the interface shape which in turn induce a perturbation velocity, also called capillary
velocity since it is due to surface tension (see Fig. 1).

(2) In order for the explicit discretization (11) to be stable with respect to surface tension influence, one
needs to choose a sufficiently small time step so that the displacement (during the time step) of the inter-
face is smaller than the size J of the perturbation of the interface (see Fig. 1), i.e.:

At, < i, (24)
[[wll
where ||w|| is the norm of the perturbed velocity (which will be defined in the following) induced by sur-
face tension.
(3) In order to find the stability condition, we thus need to find a refined bound on velocity with respect to
the perturbation of the interface: this is the key point of the analysis and the new contribution compared
to previous heuristics.

In order to gauge the extent of this perturbed velocity, we perform the analysis on the continuous problem
instead of the discrete problem. For that, we assume that the numerical scheme approximates consistently the
continuous problem.

We consider a smooth interface I'y(¢), at a time ¢, and assume it is parametrized as

Lo(t) = {(ery()vr, (5) € R?/s € [=1; 1)}, (25)
Let then f be a C? function with supp(f) C [~1;1] such that ||f|| = 1 and ||f]|.2 = O(1). We consider the
following perturbation of I'y(¢):

(@) = { (@i ) +07(3) ) e R/s e =11, (26)
where ¢ and L are, respectively, the amplitude and the wavelength of a small perturbation. We will see that we
are concerned with small wavelength L, which generates some high curvatures variations and, in turn, some
high local velocities. The limitation on time step is such that the numerical scheme has to predict an interface
I'(t + At) with a smaller perturbation than the one of I'(f). The same analysis can then be performed when
considering a perturbation of the velocity instead of a perturbation of the interface.

Let us recall that in the Level Set framework, a regularization of Dirac delta function (VH(¢)) is obtained
by considering H, instead of H, where H, is a smooth increasing function and approximates the Heaviside
function as & goes to zero, suppH,, C (—¢;¢), ||H,||, <2

perturbed interface

l asymptotic interface
u pert

Fig. 1. A perturbed interface (of amplitude 6 and wavelength L) and induced velocity.
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Let us define x(x, ) (resp. x(x,y)), the curvature of I'y (resp. I') at a point (x,y) € R?. Both curvatures x
and « are useful in an e-neighbourhood of I'y and I" when the Dirac delta function on the interface is e-reg-
ularized. Nevertheless, in order to simplify the analysis and to estimate the source term, the curvatures are
extended on the full domain in such a way that

HV’COHLx(m = ||8sK0||pC(r0)> HVKHL*(Q) = HaSKHLO‘(F)ﬂ (27)

where 0, denotes the tangential derivative along I" or I'.
Let us recall the so-called standard pressure shift that we use in order to reformulate source term (8) of
Navier—Stokes equation (1), namely oxVH,.(¢). By the chain rule we have

KVH, () = V(kH,(#)) — (Vi)H,(6). (28)
Thus,

p(du+u-Vu) — V- (2nDu) + Vp = 6xVH () (29)
can be rewritten as (o being constant)

p(0u+u-Vu) — V- (2nDu) + Vp = V(okH,(¢)) — 6(VK)H, (), (30)
where pure gradient term V(oxH,(¢$)) can then be included to pressure term so that:

p(0u+u-Vu) — V. (2nDu) + V(p — oxH,(¢)) = —a(Vr)H,(¢). (31)

Finally, we made the following change of variable (keeping the same notation) p — okH . (¢p) — p also known
as pressure shift. The reformulated Navier—Stokes equation becomes:

p(0u+u-Vu)— V- (2nDu) + Vp = —a(Vr)H (). (32)

We can now begin to find a bound on the perturbed velocity. To do so, we write equation (32) associated to
both interfaces Iy and I'. We denote u the velocity field associated to the interface I'y and verifying

foom+w- )= GaDu) + Ty = —o(TmA ), -
V-(u)=0
and v the velocity field associated to the interface I' and verifying
{ p(Ov+v.VV) =V - (2yDv) + Vp = —a(Vr)H (¢), (34)
V- (v)=0.

We then denote w = v — u and take the difference of (34) and (33) to obtain (assuming p and # are constant
and denoting ¢ = p — p,)

V- (w) =0, (35)

PO — V- (21DW) + pv.VW + pw.Vu + Vg = —a[V (i — k)l H.(9) — o[VioJ[H.(9) — Hi(do)).  (36)
One can show that right-hand side terms verify the following inequalities:

0
IV (x = 1c0)|Ho(P)l](0) < €755 (37)
co

[[Vko][H.(¢) — Ha((f)o)]”m(m < H65K0||L’°(FO) e (38)

the source term of (36), denoted g below, is then bounded at time ¢ = 0, in L*(R?) norm by
0 0
IO~ < o033+ 1ol ). (39

where ¢ does not depend on ¢, L, ¢ and o. We note that the inequality involving ¢ is not optimal when ¢ goes to
zero, but we will see that it is sufficient for the analysis with & ~ Ax.

We will now perform a so-called L* energy estimate of (36) [50]. It consists in multiplying equation (36) by w
and integrating resulting equation over Q. Taking into account that w is divergence free, the pressure gradient
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term vanishes; then by use of definition of L*(Q)-norm, Green theorem and Cauchy-Schwarz inequality, it
reads

pd
2dt
After this mathematically rigorous analysis, we decide to introduce Assumption 4.

2 2 2
W2 0) + 1 VW2 0) < N8l W20 + oIV (g) W20 (40)

Assumption 4. It is the first assumption of this derivation, namely

1
HVWHLZ(Q) NZ”WHLZ(Q)? (41)

i.e. a source term induces a velocity perturbation which is essentially of the same wavelength L. Note that this
assumption is numerically verified as it can be seen, for instance in Fig. 4 (where the vortex size is of the same
order of the interface perturbation’s wavelength).

Furthermore, it is probably not so easy to prove rigorously this estimation, even for Stokes equation.
Thanks to (41), there exists a constant C such that

pd 2 Cn 2 L
2 dr ||w||L2(Q) + (? - /’|V“||L°@(Q)) HW”LZ(Q) < C_n ||gHL2(Q)~ (42)
Note that, because (41) is not an equality, we only know that C is of order one but its value is not known
exactly. This plays a role in the fact that it will not be possible to predict an exact value of ¢,. This will be
discussed later.

To continue the derivation, we now introduce Assumption 5.

Assumption 5. It is the second and last assumption of this derivation, namely
Cn
V|~ < =55 43
pl[Vull, @ 52 (43)

which is true for sufficiently low Reynolds numbers.

Then, the end of the derivation is completely mathematically rigorous and relies on standard mathematical
analysis tools for partial differential equations. By plugging (43) into (42) and using Gronwall’s lemma we get

Cn Cn L*
IO < IO g o5 (=) + (1= exp (= 00) ) i sup (ol (44)

C*n? seon)

If we consider that the initial velocity is not perturbed, w(0) = 0 and the source term g is maximal for ¢ = 0,
finally

C I?
Wl < (1 ~exp (—p—r)) S leOle >0, (45)

Using again the profile of the solution (as in Assumption (41)) and the surface tension term, we have

Wl 20) ~ LWl (o)

/ (46)
HgHLZ(g) ~L ||g||pc(g)
Assumptions (46) and inequality (45) yield
Cn L2
Ol < (1= o0 (< 4) ) £ 10y 120 @)

Considering a time discretization of (36) with an implicit discretization of the diffusive term and an explicit
discretization of the source term, discrete analog of (47) on a time step At is
At I?

[W(AD)]] () < Z A 18| 0) W2 > 0. (48)
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As mentioned in the previous outline (on page 7), with (24), we can now determine an inequality verified by the
capillary time step A¢,. If the displacement of the interface is larger than 20, perturbations are amplified and
oscillate. Finally, with (24), (39), (48) combined, we can write the stability condition by saying that the oscil-
lations are removed if

_ P Cpg—;,+AtU n L
[W(AL) o) Aty 0 1+ [[0ykol ey 2

&

At,

(49)

As the wavelength L is upper bounded, this condition is restrictive for the smaller admissible wavelength in the
numerical process. We are then concerned with L ~ Ax, which gives

AR < e g AxAt, + ¢, gA)ﬁ (50)

with ¢, ¢, two positive constants independent of physical and numerical parameters. We finally obtain (18)
which completes the derivation in the case where we consider that initial velocity is not perturbed.

If we consider a perturbation (with a given wavelength L) of the initial velocity, w(0) # 0, instead of a per-
turbation of the interface, the interface is deformed with the same wavelength. The same analysis can be per-
formed starting from (44). The maximal value of g is reached for a positive time, corresponding to a maximal
value of the amplitude of the deformation on the interface.

The goal of the following two sections is, first, to validate from a numerical point of view the stability con-
dition (23) and, second, to discuss features linked with this derivation and compare it with the previous heu-
ristics described in the literature. Even if the condition induced by (18) is the less restrictive, condition (23) is a
pertinent sufficient stability condition when considering flows driven by capillary instability. This point will
also be discussed in the following section.

4.2. Numerical confirmation of the stability condition

We now present numerical simulations which validate the stability condition
_h
Atstk = ¢ — Ax. (51)
g

This time step is smaller than Az, but is close when the inertia phenomena are small. Microfluidics is a typical
example of such flows where surface tension is preponderant, and thus, unconfined droplets have a near cir-
cular shape which translates in straight channels, when the flow velocity is low. We will use this framework in
order to simulate these kind of physically stable interfaces and will show that constant ¢, exhibited in our der-
ivation exists. Namely, there exists a threshold value for ¢, such that if ¢, is chosen under this threshold (resp.
above) the simulation becomes numerically stable (resp. unstable).

We perform numerical simulations in two dimensions taking the parameters in such a way we simulate
microflows. Namely, we consider a rectangular channel with a section of 120 x 10~® m. The maximum of
injection velocity is 9 x 107 m/s. Viscosity and density are equal in both fluid: #, = #, =2 x 107 and
p, = p, = 107%. Surface tension is ¢ = 3 x 10, Discretization in space is such that there are 36 cells in the
section and 80 cells in the direction of the channel.

Note that with these parameters, we take, on purpose, a vanishing density in such a way that stability con-
dition (51) is (i) in order of 10> times greater than the condition proposed by Brackbill et al. and (ii) more
restrictive than the CFL condition. The latter is classically expected, contrary to (i). This will be further dis-
cussed in the following section.

We point out the quality of the numerical simulations through viewing the velocity field in the frame of
moving interface. We consider droplets moving in a straight channel, where the droplet’s shape has to con-
verge to an asymptotic shape so that the velocity field in the drop frame of reference is tangential to the inter-
face. Details on how to exhibit the drop frame of reference are given in Appendix A.

As a first test case, we take as initial condition an interface which is ellipsoidal such that it converges to a
near circular droplet shape (with diameter equal to 2/3 of channel section) under the mentioned flow condi-
tions. This initial state is shown in the left of Fig. 2. An asymptotic stable shape is obtained in finite time and
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Fig. 2. Left: initial state of simulation. Right: asymptotic state of the droplet. Interface is represented by a thick black line and velocity
field in droplet’s frame of reference is represented by blue arrows. Note that arrows scale of the right is 10 times the one on the left. On the
right, streamlines are added with black thin arrowed lines and show that the asymptotic state has been reached. Here ¢, = 8. (For
interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

shown in the right of Fig. 2. In this test, ¢c; = 8. The numerical simulation remains stable for all computational
time and one can observe that the asymptotic shape is reached since streamlines in the droplet’s frame of ref-
erence are tangent to the interface.

Such snapshot is always obtained for values of ¢, such that: ¢, < 8§; this is the threshold above which sim-
ulations become unstable. As a matter of fact, if we run the same simulation with ¢, = 9, the interface first
converges toward the asymptotic shape and then becomes unstable. In the left of Fig. 3, we see the same initial
state presented in the left of Fig. 2 except that we use the arrow scale of the right of Fig. 2; this allows to have
an idea of the scaling change. In the right of Fig. 3, the snapshot at the same time of the right of Fig. 2 is
shown and clearly exhibits the numerical instabilities due to the violation of our condition. When looking
at the evolution of this interface, we see that it oscillates around the asymptotic with an amplitude growing
with time, leading to inconsistent results and eventually a break of the simulation. Such parasitic currents
do not have to be confused with the ones discussed in Section 1, which are of greater size and which do
not diminish with mesh refinement.

Note that we also perform same simulations which show that this threshold value ¢, = 8 is unchanged
under mesh refinement, which numerically proves the independence of ¢, with respect to the mesh size, as
shown in our derivation. In the same manner, this threshold is independent of # and ¢. Furthermore, if p
is increased this value of ¢, also lead to numerically stable simulations as it is predicted by the analysis.
For large p, note that the stability condition induced by (20) is not optimal and can be relaxed to the one
induced by (18).

With our computation of c